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1 INTRODUCTION

Clustering is the task of grouping a set of objects in such a way that objects in the same
group (called a cluster) are more similar (in some sense or another) to each other than to
those in other groups (clusters). It is a method of unsupervised learning to draw inferences
from datasets consisting of input data without labeled responses. Clustering is used for
exploratory data analysis to find hidden patterns or grouping in data. The clusters are
modeled using a measure of similarity which is defined upon metrics such as Euclidean,
pairwise or probabilistic distance.

The problem is computationally difficult (NP-hard), and thus the common approach is to
search only for approximate solutions. A particularly well known approximation method
is Lloyd’s algorithm,[3] often actually referred to as “k-means algorithm". It does however
only find a local optimum, and is commonly run multiple times with different random
initializations. On the contrary, Rose in [1] proposed an annealing-based algorithm, well
described in terms of laws such as minimum free energy principle in statistical physics liter-
ature, and showed that the solutions obtained using this approach are totally independent
of the choice of initial configurations. The algorithm is referred as deterministic annealing
(DA) algorithm and is aimed to provide high-quality solutions to a clustering problem with
only marginal increase in computational complexity.

The original DA algorithm by Rose aims to cluster a set of points Z ={x; € 2:1<i < N}
in some bounded domain 2 in the Euclidean space, i.e., the points are separable in the
Euclidean domain. However, a major drawback to DA algorithm is that it cannot sepa-
rate clusters that are non-linearly separable in input space. On the other hand, the task of



unsupervised grouping of shapes (also known as shape clustering) requires a non-linear sepa-
ration of data points. Two recent approaches have emerged for tackling such a problem. One
is kernel k-means [6], where, before clustering, points are mapped to a higher-dimensional
feature space using a nonlinear function, and then kernel k-means partitions the points by
linear separators in the new space. The other approach is spectral clustering algorithms [5],
which use the eigenvectors of an affinity matrix to obtain a clustering of the data. A popular
objective function used in spectral clustering is to minimize the normalized cut [4].

Similar to basic k-means, the kernel k-means is sensitive to initialization and a poor
initialization may result in undesirable clustering performance. On the other hand, spectral
clustering methods are eigenvector-based algorithms and software to compute eigenvec-
tors of large sparse matrices (often based on the Lanczos algorithm) can have substantial
computational overheads, especially when a large number of eigenvectors are to be com-
puted. To overcome these limitations, a weighted kernel-DA approach is presented in this
report. The weighted-kernel DA enjoys the best of both worlds. On one hand, the algorithm
is independent of initialization, and on the other hand, the method does not require to
compute eigenvectors. Further, it is shown that by choosing the weights in particular ways,
the weighted kernel DA objective function is identical to the normalized cut. This equiv-
alence has an important implication: we can use DA-like iterative algorithms for directly
minimizing the normalized-cut of a graph.

A word about notations. Capital letters such as A, X, Y and ® denote matrices; lower-case
bold letters such as a, b denote column vectors; script-letters <, 28,7 and & represent sets;
lall denotes the L?>-norm of a vector; and || X||r denotes the Frobenius norm of a matrix,

and is given by || X||F = (Zi,j Xl.zj)2

The rest of the report is organized as follows. Section 2 introduces the basic DA algorithm
by Rose, which is modified for shape-clustering applications using kernel trick in Section 3.
We then specify kernel-DA’'s equivalence to spectral clustering in Section 4, followed by a
couple of clustering examples in Section 5.

2 DETERMINISTIC ANNEALING (DA)

At its core, the Deterministic Annealing (DA) algorithm solves a facility location problem
(FLP), i.e., given a set of demand point locations & = {x;,i € N, 5}, find K € N facility
locations % = {yj, j € N[ kj} such that the rotal weighted sum of the distance of each demand
point from its nearest facility location is minimized. Borrowing from the data compression
literature, we define distortion as a measure of the average distance of a demand point to
its nearest facility, given by D(Z',%)= ) p(x;) min d(x;,y;). The solution to an FLP

iEN[l,N] JeNpK
satisfies the following two necessary (but not necessarily sufficient) properties:

* Voronoi partitions: The partition of the domain is such that each demand point in the
domain is associated only to its nearest resource (cluster) location.

* Centroid condition: The resource location y; is at the centroid of the j* " cluster C i



Most algorithms for FLP (such as Lloyd’s [3]) are overly sensitive to the initial resource
locations. This is primarily due to the distributed aspect of the FLPs, where any change
in the location of the i*" demand point affects d(x;, y;) only with respect to the nearest
facility j. The DA algorithm suggested by Rose [1], overcomes this sensitivity by allowing
fuzzy association of every demand point to each facility through an association probability,
p(yjlxi):

D&, %)= Y px) Y. pyjlx)dx,y). 2.1)

1eNp,n JeNx

Thus the notion of average distance of a demand point from its nearest facility is replaced
by the weighted average distance of demand points to all the facilities. The probability
distribution {p(y;|x;)} determines the trade-off between decreasing the local influence and
the deviation of the modified distortion D from the original distortion measure D. The
uncertainties in facility locations {y;} with respect to the demand point locations {x;} is
captured by Shannon entropy H¥ %) =—- ¥ px) Y pyjlx)logp(yjlx:)), widely

l‘EN[l’N] jeN[l,K]
used in data compression literature. Therefore, maximizing the entropy is commensurate

with decreasing the local influence.
This trade-off between maximizing the entropy and minimizing the distortion in Eq. (2.1)
is addressed by seeking the probability distribution {p(y;|x;)} that minimize the free-energy,

- 1
or the Lagrangian, given by F := D(¥,%) — EH (%), where S is the Lagrange multiplier

and bears a direct analogy to the inverse of the temperature variable in an annealing process
[2]. The association weights {p(y;|x;)} that minimize the free-energy function are given by

the Gibbs distribution
e_ﬁd(xi ’yj)

p(yjlxi) = prrTeRml 2.2)

JENK)

By substituting the Gibbs distribution (2.2), the corresponding free-energy function is ob-
tained as .

F@)=-- Y pllog( Y ePdemp), 2.3)

ﬁ ieN[, N JeNp,x

In the DA algorithm, the free-energy function is deterministically optimized at successively
increased values of the annealing parameter (5. Note that d(x;, y;)) is typically chosen as the
squared-Euclidean distance, i.e.,

d(x;, y)) = lxi — yjl°. (2.4)

Taking derivative of the free-energy function w.r.t. y; results in the following constraint

equation

_ Xipx)p(yjlxi)x;
Yipx)pyjlx)

The above equation has a form similar to computing centroid in k-means clustering algo-

rithm. However, in k-means clustering, the association between x; and y; are hard (0-1).

The DA algorithm alternates between Egs. (2.2) and (2.5) at each f until convergence.

Yj (2.5)



3 WEIGHTED-KERNEL DA

The DA clustering algorithm can be enhanced by the use of a kernel function; by using an ap-
propriate nonlinear mapping from the original (input) space to a higher dimensional feature
space, one can extract clusters that are non-linearly separable in input space. Furthermore,
we can generalize the kernel DA algorithm by introducing a specific choice of weight p(x;)
for each point x;. As we shall see later, this generalization is powerful and encompasses the
normalized cut of a graph.
Using the non-linear function ¢, the distortion function of the weighted kernel-DA is
defined as:
DX, =Y p&) Y pileax))lex) -yl 3.1)

iEN[LN] jEN[LK]

where

_ Lipa) p(yldx))p(xi)
Vi Ty papyld)

e Blox-y;I?
p(yjld(xi) = g 3.2)
J€Np K
Thus the Euclidean distance from ¢(x;) to centroid y; is given by
lp(x:) = yjlI* =< p(x:), p(x:) > + <y, yj > -2 < p(x), yj > (3.3)

The inner-products < ¢(x;), $(x,,) > are computed using kernel functions «x (e.g. Gaussian,
polynomial or rbf-kernel), and are contained in the kernel matrix K. All computation in (3.3)
is in the form of such inner products, hence we can replace all inner products by entries of
the kernel matrix, i.e.,

22511 px) p(yjlpx))Ki;
YN, pE)plyjloap)
X et PEDP@m) p (1)) P16 (X)) K
+

(ZN, pen plyjlpa)

lp(xi) — yill* =Ki; —

(3.4)

In the weighted-kernel DA algorithm, the Euclidean distance in (3.4) is iteratively computed
until convergence at each f value.

4 SPECTRAL CONNECTION

At first glance, weighted kernel DA and normalized cuts using spectral clustering appear
to be quite different. After all, spectral clustering uses eigenvectors to help determine the
partitions, whereas eigenvectors do not appear to figure in kernel DA. However, we know
that the normalized cut problem can be expressed as a trace maximization problem, and



in this section, we show how we can express weighted kernel DA as a trace maximization
problem as well. This will show how to connect the two methods of clustering.

For further discussion, we make use of following notations. The distortion of cluster
Cj is given by D(Cj) = XYiec; P(xi)Pp(xi) — yj||2. Then the total distortion D = 2.; D(Cy).
Moreover, let us denote, for a cluster C;, the sum of p(x;) weights of points in C; to be s, i.e.,
$j = Xiec; p(xi). Finally, let us denote W to be the diagonal matrix of all the p weights, and
W; to be the diagonal matrix of the weights in C;. Then we can rewrite the centroid y; as

Wie;j

Vi=®@; )
Sj

where ®; is the matrix of points associated with cluster Cj, the full matrix of points ® =
[®@1,..., @], and e;j is the vector of all ones of appropriate sizes. It is shown in [6], that the
minimization of total-distortion is equivalent to the following trace maximization problem,
given by

min D(G&),%) =  maxTrace| Y W?oTow!?2y |, (4.1)
{CiLi} Y ——
K
where
W]l/zel
$1
Wzl/zez
Y = sz
W]i/zek
Sk

Note that Y is an N x k orthonormal matrix, i.e., Y Y = I. A standard result in linear algebra
provides a global solution to a relaxed version of this problem. By allowing Y to be an
arbitrary orthonormal matrix, we can obtain an optimal Y by taking the top k eigenvectors
of W2KW1/2, Similarly, the sum of the top k eigenvalues of W'/2KW1/2 gives the optimal
trace value.

On the other hand, for a graph G with edge-weight matrix A and degree-matrix D, the
optimization problem for the relaxed normalized cut problem is given by

maxTrace| YD Y20Td D712y st. Yly=1. (4.2)
Y A

Note that the optimization problem in (4.1) is similar to optimization problem in (4.2). Thus,
if we consider weighted kernel DA with W = D and K = D~'/2AD~!/2, the two problems are
identical. Thus, if the affinity matrix K is positive definite, we can use the weighted kernel
DA procedure described above in order to minimize the normalized cut, without the need
to compute eigenvectors.
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Figure 5.1: Results of kernel-DA approach for shape clustering

5 RESULTS

We now describe some preliminary results of the kernel-DA method. We consider two
instances - (1) semicircle and two disks, (2) concentric ring and a disk. Fig. 5 shows the
performance of the proposed kernel-DA method for the two instances. As can be seen from
the figure, the kernel-DA correctly identifies the underlying shapes. Note that a geometric
scheduling rate of § update (i.e. fB;+; = 1.05 % ;) is employed and thus results in fast
clustering performance. The kernel matrices are generated using Gaussian kernels.
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